Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Morchellaspecies have considerable significance in terrestrial ecosystems, exhibiting a range of ecological lifestyles along the saprotrophism-to-symbiosis continuum. However, the mitochondrial genomes of these ascomycetous fungi have not been thoroughly studied, thereby impeding a comprehensive understanding of their genetic makeup and ecological role. In this study, we analysed the mitogenomes of 30Morchellaceaespecies, including yellow, black, blushing and false morels. These mitogenomes are either circular or linear DNA molecules with lengths ranging from 217 to 565 kbp and GC content ranging from 38% to 48%. Fifteen core protein-coding genes, 28–37tRNAgenes and 3–8rRNAgenes were identified in theseMorchellaceaemitogenomes. The gene order demonstrated a high level of conservation, with thecox1gene consistently positioned adjacent to thernSgene andcobgene flanked byaptgenes. Some exceptions were observed, such as the rearrangement ofatp6andrps3inMorchella importunaand the reversed order ofatp6andatp8in certain morel mitogenomes. However, the arrangement of thetRNAgenes remains conserved. We additionally investigated the distribution and phylogeny of homing endonuclease genes (HEGs) of the LAGLIDADG (LAGs) and GIY-YIG (GIYs) families. A total of 925 LAG and GIY sequences were detected, with individual species containing 19–48HEGs. These HEGs were primarily located in thecox1,cob,cox2andnad5introns and their presence and distribution displayed significant diversity amongst morel species. These elements significantly contribute to shaping their mitogenome diversity. Overall, this study provides novel insights into the phylogeny and evolution of theMorchellaceae.more » « lessFree, publicly-accessible full text available February 21, 2026
-
The Fusarium oxysporum species complex (FOSC) includes both plant and human pathogens that cause devastating plant vascular wilt diseases and threaten public health. Each F. oxysporum genome comprises core chromosomes (CCs) for housekeeping functions and accessory chromosomes (ACs) that contribute to host-specific adaptation. This study inspects global transcription factor profiles (TFomes) and their potential roles in coordinating CC and AC functions to accomplish host-specific interactions. Remarkably, we found a clear positive correlation between the sizes of TFomes and the proteomes of an organism. With the acquisition of ACs, the FOSC TFomes were larger than the other fungal genomes included in this study. Among a total of 48 classified TF families, 14 families involved in transcription/translation regulations and cell cycle controls were highly conserved. Among the 30 FOSC expanded families, Zn2-C6 and Znf_C2H2 were most significantly expanded to 671 and 167 genes per family including well-characterized homologs of Ftf1 (Zn2-C6) and PacC (Znf_C2H2) that are involved in host-specific interactions. Manual curation of characterized TFs increased the TFome repertoires by 3% including a disordered protein Ren1. RNA-Seq revealed a steady pattern of expression for conserved TF families and specific activation for AC TFs. Functional characterization of these TFs could enhance our understanding of transcriptional regulation involved in FOSC cross-kingdom interactions, disentangle species-specific adaptation, and identify targets to combat diverse diseases caused by this group of fungal pathogens.more » « less
-
Summary Although secondary metabolites are typically associated with competitive or pathogenic interactions, the high bioactivity of endophytic fungi in the Xylariales, coupled with their abundance and broad host ranges spanning all lineages of land plants and lichens, suggests that enhanced secondary metabolism might facilitate symbioses with phylogenetically diverse hosts.Here, we examined secondary metabolite gene clusters (SMGCs) across 96 Xylariales genomes in two clades (Xylariaceae s.l. and Hypoxylaceae), including 88 newly sequenced genomes of endophytes and closely related saprotrophs and pathogens. We paired genomic data with extensive metadata on endophyte hosts and substrates, enabling us to examine genomic factors related to the breadth of symbiotic interactions and ecological roles.All genomes contain hyperabundant SMGCs; however, Xylariaceae have increased numbers of gene duplications, horizontal gene transfers (HGTs) and SMGCs. Enhanced metabolic diversity of endophytes is associated with a greater diversity of hosts and increased capacity for lignocellulose decomposition.Our results suggest that, as host and substrate generalists, Xylariaceae endophytes experience greater selection to diversify SMGCs compared with more ecologically specialised Hypoxylaceae species. Overall, our results provide new evidence that SMGCs may facilitate symbiosis with phylogenetically diverse hosts, highlighting the importance of microbial symbioses to drive fungal metabolic diversity.more » « less
An official website of the United States government
